Pallas Solver
0.1
C++ Global Optimization Algorithms
|
#include <simulated_annealing.h>
Public Member Functions | |
void | set_step_function (scoped_ptr< StepFunction > &user_step_function) |
Convenience function for changing the default step function. More... | |
Public Attributes | |
CoolingSchedule::Options | cooling_schedule_options |
GradientLocalMinimizer::Options | local_minimizer_options |
scoped_ptr< StepFunction > | step_function |
unsigned int | max_iterations |
unsigned int | max_stagnant_iterations |
unsigned int | dwell_iterations |
double | minimum_cost |
bool | polish_output |
bool | is_silent |
unsigned int | history_save_frequency |
Configurable options for modifying the default behaviour of the simulated annealing algorithm.
|
inline |
Convenience function for changing the default step function.
This function simply swaps the scoped_ptr to the user defined StepFunction
with the scoped_ptr to the StepFunction
held within the pallas::SimulatedAnnealing::Options
struct.
user_step_function | pallas::scoped_ptr<pallas::StepFunction>. This function generates randomized candidate solutions based on the current position. |
CoolingSchedule::Options pallas::SimulatedAnnealing::Options::cooling_schedule_options |
The annealing schedule to use. Must be one of ‘FAST’, ‘CAUCHY’ or ‘BOLTZMANN’. see pallas::CoolingSchedule.
unsigned int pallas::SimulatedAnnealing::Options::dwell_iterations |
The number candidate solutions to generate before decreasing the temperature.
unsigned int pallas::SimulatedAnnealing::Options::history_save_frequency |
Frequency to save the state of the system. Values will be appended to a HistorySeries
contained in the optimization summary. Default is 0. If 0 then history is not saved. Otherwise, the state of the system will be appended to the series when i % history_save_frequency == 0
. If there are a large number of iterations this can lead to a lot of data being stored in memory.
bool pallas::SimulatedAnnealing::Options::is_silent |
Whether to log failure information relating the to global optimization algorithm using glog.
GradientLocalMinimizer::Options pallas::SimulatedAnnealing::Options::local_minimizer_options |
Contains any changes to the default options for the local minimization algorithm. See the documentation for ceres::GradientProblemSolver::Options for relevant options
unsigned int pallas::SimulatedAnnealing::Options::max_iterations |
Maximum number of simulated annealing iterations.
unsigned int pallas::SimulatedAnnealing::Options::max_stagnant_iterations |
Maximum number sequential simulated annealing iterations allowed without finding a new global minimum.
double pallas::SimulatedAnnealing::Options::minimum_cost |
User specified minimum cost. Minimization will halt if minimum_cost
is reached.
bool pallas::SimulatedAnnealing::Options::polish_output |
Whether the global minimum found through differential evolution should be subjected to a local minimization "polishing" step before returning the result.
scoped_ptr<StepFunction> pallas::SimulatedAnnealing::Options::step_function |
Function that produces randomized candidate solutions.