Pallas Solver
0.1
C++ Global Optimization Algorithms
|
Minimizes a function using simulated annealing. More...
#include <simulated_annealing.h>
Classes | |
struct | HistoryOutput |
Stores information about the state of the system for at a given iteration number. More... | |
struct | Options |
struct | Summary |
Contains a summary of the optimization. More... | |
Public Member Functions | |
SimulatedAnnealing () | |
Default constructor. | |
void | Solve (const SimulatedAnnealing::Options &options, const GradientProblem &problem, double *parameters, SimulatedAnnealing::Summary *global_summary) |
Minimizes the specified gradient problem. More... | |
Minimizes a function using simulated annealing.
Uses simulated annealing, a random algorithm that uses no derivative information from the function being optimized. Other names for this family of approaches include: “Monte Carlo”, “Metropolis”, “Metropolis-Hastings”, etc.
Example
void pallas::SimulatedAnnealing::Solve | ( | const SimulatedAnnealing::Options & | options, |
const GradientProblem & | problem, | ||
double * | parameters, | ||
SimulatedAnnealing::Summary * | global_summary | ||
) |
Minimizes the specified gradient problem.
The specified options are used to setup a simulated annealing instance which is then used to minimize the GradientProblem. The optimal solution is stored in parameters
and a summary of the global optimization can be found in summary
.
options | pallas::SimulatedAnnealing::Options. Options used to configure the optimization. |
problem | pallas::GradientProblem. The problem to optimize. |
parameters | double*. The starting point for further optimization. |
summary | SimulatedAnnealing::Summary*. Summary instance to store the optimization details. |